- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Chaoji (2)
-
Hu, Liangbing (2)
-
Liu, Yang (2)
-
Qiao, Yun (2)
-
Wang, Xizheng (2)
-
Yao, Yonggang (2)
-
Dong, Qi (1)
-
Liu, Dapeng (1)
-
Liu, Yifan (1)
-
Shao, Yuyan (1)
-
Wang, Chao (1)
-
Zhong, Geng (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Qiao, Yun; Yao, Yonggang; Liu, Yang; Chen, Chaoji; Wang, Xizheng; Zhong, Geng; Liu, Dapeng; Hu, Liangbing (, Small)Abstract High temperature synthesis and treatments are ubiquitous in chemical reactions and material manufacturing. However, conventional sintering furnaces are bulky and inefficient with a narrow temperature range (<1500 K) and slow heating rates (<100 K min−1), which are undesirable for many applications that require transient heating to produce ideal nanostructures. Herein, a 3D‐printed, miniaturized reactor featuring a dense micro‐grid design is developed to maximize the material contact and therefore acheive highly efficient and controllable heating. By 3D printing, a versatile, miniaturized reactor with microscale features can be constructed, which can reach a much wider temperature range (up to ≈3000 K) with ultrafast heating/cooling rates of ≈104K s−1. To demonstrate the utility of the design, rapid and batch synthesis of Ru nanoparticles supported in ordered mesoporous carbon is performed by transient heating (1500 K, 500 ms). The resulting ultrafine and uniform Ru nanoparticles (≈2 nm) can serve as a cathode in Li‐CO2batteries with good cycling stability. The miniaturized reactor, with versatile shape design and highly controllable heating capabilities, provides a platform for nanocatalyst synthesis with localized and ultrafast heating toward high temperatures that is otherwise challenging to achieve.more » « less
An official website of the United States government
